User warning: The following module is missing from the file system: readonlymode. For information about how to fix this, see the documentation page. in _drupal_trigger_error_with_delayed_logging() (line 1156 of /var/www/html/starling.sbs.arizona.edu/mig/ischool/includes/bootstrap.inc).

Degree Requirements – Information Science & Arts

 

Foundations

  • 1st Year English or equivalent
  • MATH 107 or MATH 112 (or higher)
  • 4th semester second language proficiency

General Education

Beginning in Spring 2022, the University of Arizona launched a gen-ed refresh program. Discuss with your academic advisor if you have any questions or concerns.

Students who started after Spring 2022:

  • UNIV 101 (not required for transfer or readmitted students)
  • 3 units Artist
  • 3 units Humanist
  • 3 units Natural Scientist
  • 3 units Social Scientist 
  • 9 units 'Building Connections'
  • UNIV 301 (not required for transfer or readmitted students)
  • 32 units of general education minimum  (includes foundations: Math, English, language)

Students who started before Spring 2022:

  • 6 units Tier 1 Individuals & Societies
  • 6 units Tier 1 Traditions & Cultures
  • 6 units Tier 1 Natural Sciences
     
  • 3 units Tier 2 Humanities
  • 3 units Tier 2 Natural Sciences
  • 3 units Tier 2 Individuals & Societies
  • 3 units Diversity (can be completed with another GE course)

Minor

Required, minimum of 18 units (or double-major)

All SBS minors

All UArizona minors

Core Courses

  • Complete 5 courses (15 units)
  • CSC 110 can sub for ISTA 130

Important ideas and applications of information science and technology in the sciences, humanities and arts. Information, entropy, coding; grammar and parsing; syntax and semantics; networks and relational representations; decision theory, game theory; and other great ideas form the intellectual motifs of the Information Age and are explored through applications such as robotic soccer, chess-playing programs, web search, population genetics among others.

Understanding uncertainty and variation in modern data: data summarization and description, rules of counting and basic probability, data visualization, graphical data summaries, working with large data sets, prediction of stochastic outputs from quantitative inputs.  Operations with statistical computer packages such as R.

An introduction to computational techniques and using a modern programming language to solve current problems drawn from science, technology, and the arts. Topics include control structures, elementary data structures, and effective program design and implementation techniques. Weekly laboratory.

**Programming-intensive Course, College Algebra recommended

At the core of Information Science lies the digital data that is the object of study. This course aims to introduce the tools, techniques, and issues involved with the handling of this data: where it comes from, how to store and retrieve it, how to extract knowledge from the data via analysis, and the social, ethical, and legal issues involved in its use. Throughout the course, students will be given hands-on experience with actual datasets from a variety of sources including social media and citizen science projects, as well as experience with common tools for analysis and visualization. Students will also examine topical case studies involving legal and ethical issues surrounding data.

This course explores the social, legal, and cultural fallout from the exponential explosion in communication, storage, and increasing uses of data and data production. In this class, we emphasize the opposing potentials of information technologies to make knowledge widely available and to distort and restrict our perceptions. In a world of rapid technological change, topics include (but are not limited to): eavesdropping and secret communications, privacy; Internet censorship and filtering, cyberwarfare, computer ethics and ethical behavior, copyright protection and peer-to-peer networks, broadcast and telecommunications regulation, including net neutrality, data leakage, and the power and control of search engines.

Research Methods

  • 3 units total

Choose one class from:

This course will lay a foundation for understanding how to design and conduct qualitative research in the digital age. This course will focus on such practices as digital ethnography, online discourse or text analysis, web-based survey research, virtual interviewing, and data collection via mobile technologies. Broad paradigmatic assumptions underpinning interpretive inquiry will also be examined.

This course will explore broad research paradigms and theoretical approaches that inform contemporary social research, varying study designs, as well as the systematic methods utilized in differing types of data analyses. Though this course will introduce research processes across the academic spectrum, quantitative analysis of both small and large data sets will be emphasized. Therefore, students will learn about basic statistical analyses and will be introduced to the emerging worlds of data science and social media analytics. Students will also consider related topics such as data visualization or research presentations.

Computational Arts & Medias

  • 12 units total

Choose four classes from:

This course explores the process of creating interactive computer art by teaching the essential principles of programming.

This course introduces fundamental theories, principles, and practices of 3D digital modeling, rendering, and rapid prototyping. Students are given a thorough overview of 3D modeling techniques including: production of geometric and organic surfaces and forms using both NURBs and polygon construction, texturing, and lighting. Minimal materials fee for rapid prototyping assignment.

This course will lay a foundation for understanding how stories shape communities, identities, memories, and perspectives on our lives. In addition, this course will provide opportunities for the theoretical analysis of self representation, composite narratives on behalf of others, cultural heritage, and memories as they are preserved and performed within stories and through narrative. Influences on digital digital storytelling such as the sociocultural context, the institutional contexts of production the audience, and the needs or goals of the digital storyteller will be examined. Students will be required to call on their own intellectual, emotional, and imaginative processes, as well as to develop their own skills in digital storytelling, interviewing, oral history collection, and the use of relevant digital storytelling tools.

We are living in a time when nearly everyone has the means to make movies, music and photos using just their own personal tools like smartphones, iPads, and similar mobile gadgets. This course will develop and refine skills and understanding of multimedia in contemporary culture. Offering a survey of innovative works in film and information arts, this course will allow students a hands-on opportunity to respond to concepts covered in class using self-produced media. This course will address how information functions in time-based forms of multimedia and video in this era of interactive information and displays. Drawing on historical precedents in the media and computational arts, this course focuses on both linear and non-linear approaches of using image, sound and text to create critical and creative works that function in a the context of social media and our contemporary digital society. How and why do certain images, music or films affect us so profoundly? We will address this question through a study of the components of media literacy that include: Production, Language, Representation, and Audience. These concepts will be examined through a cross-section of writers including: Marshall McLuhan, John Berger and Susan Sontag.

This course examines the ways in which computing and information science support and facilitate the production and creation of art in current society. A particular focus of the course will be to discuss how artists have used advances in technology and computing capacity to explore new ways of making art, and to investigate the relationships between technical innovation and the artistic process. This class satisfies a Tier II: Arts General Education Requirement. Alternatively, this class can be applied towards the ISTA BA/BS and ISTA minor. Tier II Gen-eds can be double-dipped with a minor but not a major. 

This course will provide the student with the information and experience necessary for the creation and manipulation of digital audio. Students will have the opportunity to experience the music-making process with the technology tools and techniques that are common in both home and professional studios. The class will make use of a variety of software packages designed for contemporary music production, explaining the universal techniques and concepts that run through all major software programs. Topics will include musical analysis, MIDI control, synthesis techniques, audio editing, and audio mixing. Lab assignments will emphasize hands-on experience working with musical hardware and software to provide the necessary skills to create music based on today's musical styles. The course provides the foundation for further study, creative applications, and personal expression.

This course provides an introduction to software and hardware packages that allow students to explore rapid prototyping, object design, and physical computing using Computer-Aided Design (CAD) software, 3D printing technology, laser cutting, and Arduino microcontrollers. The processing language will also be introduced, and used for visualization and interfacing. This interdisciplinary course combines elements of computer science, electrical engineering, mechanical design, robotics, and visualization.

This is a hands-on practical course where fluency is largely built through experience building projects, rather than written exams. This course will require extensive technology training and substantial reference to open resources on the web. This course includes a team-based design competition as a final project.

An introduction to web design and development, with an emphasis on client-side technologies. Topics include HTML, Cascading Style Sheets (CSS), JavaScript, and web design best practices.

A significant portion of the human brain is devoted to understanding spatial data and its relation to the world. Through the ages humans have naturally developed external representations of such information for communication, planning, understanding, and entertainment. Further, the digital age has led to an explosion of images available to everyone in forms that are convenient to share, manipulate, and automatically mine for information. In this thematic course we will study images from perspectives that transcend disciplines, and applicable to many of them, including the arts, science and biomedicine, computational intelligence, geography, and security. We will study what images are, how images are stored and distributed, the reproduction of images, how they can be manipulated, using images for visualization, and extracting semantics from images.

This course is a hands-on, project-based approach to understanding and designing art installations. Enrollees will learn principles, tools, and techniques of rapid prototyping and installation design, and will collaborate to design and implement a large-scale installation by the end of the semester. The course lectures will also provide an overview of the history, theory, and aesthetics of installation art.

This course continues the exploration of creative coding that began in ISTA 303. Students will develop experimental and creative works based, in part, on techniques from the fields of human-computer interaction, computer vision, virtual reality, machine learning, and other disciplines that have the potential to impact our culture through the introduction of new technologies. Aside from gaining technical proficiencies needed to engage with these topics (e.g., software engineering, physical computing techniques, familiarity with multimedia packages and libraries), students will have the opportunity to explore the use of novel interaction devices (e.g., Kinect, Wii, LeapMotion, Glasses, and Oculus Rift) as well as to experiment with a range of digital media environments (e.g., projection mapping, live coding, sonification, mobile devices, physical sensors,augmented reality, immersive systems). Moreover, students will become more familiar with the history and current state of the fields of new media art and creative coding. Students will read widely from journal articles and from media arts conference and festival proceedings, and will be expected to document their own work in a clear, professional manner, both through writing assignments and the creation of an online portfolio of creative projects. By the end of this course students will have the ability to participate meaningfully (through the implementation and documentation of creative projects) in contemporary discourse regarding art and technology.

Intensive Computing

  • 3 units total

Choose one class from:

Introduction to the techniques and technologies for developing dynamic web sites. Topics include a web server, PHP as the server-side scripting language, the MySQL database, JavaScript and AJAX for enriching web services, and page layout with HTML and CSS. Security concerns will be considered with details for prevention of such vulnerabilities in web applications. This course includes a team project to deploy a dynamic website. Weekly laboratory.

Introduction to the application of GIS and related technologies for both the natural and social sciences. Conceptual issues in GIS database design and development, analysis, and display.

This course will introduce students to the fundamental concepts and tools used to convey the information contained within large, complex data sets through a variety of visualization techniques. Students will learn the fundamentals of data exploration data via visualizations, how to manipulate and reshape data to make it suitable for visualization, and how to prepare everything from simple single-variable visualizations to large multi-tiered and interactive visualizations. Visualization theory will be presented alongside the technical aspect of the course to develop a holistic understanding of the topic.

This course introduces students to the theory and practice of data mining for knowledge discovery. This includes methods developed in the fields of statistics, large-scale data analytics, machine learning, and artificial intelligence for automatic or semi-automatic analysis of large quantities of data to extract previously unknown and interesting patterns. Topics include understanding varieties of data, classification, association rule analysis, cluster analysis, and anomaly detection. We will use software packages for data mining, explaining the underlying algorithms and their use and limitations. The course will include laboratory exercises, with data mining case studies using data from biological sequences and networks, social networks, linguistics, ecology, geo-spatial applications, marketing and psychology.

This course will provide an introduction to informatics application programming using the python programming language and applying statistical concepts from a first semester statistics course. A key goal of this course is to prepare students for upper division ISTA courses by expanding on the skills gained in ISTA 116 and 130 but will be broadly applicable to any informatics discipline.  Throughout the semester students will be faced with information application problems drawn from several different disciplines in order to expand their breadth of experience while simultaneously increasing their depth of knowledge of scientific and informatics programming methods.  Students will practice problem decomposition and abstraction, gaining experience in identifying commonly occurring information processing issues and in applying well-known solutions.  In addition, students will design their own algorithmic solutions to problems and will learn how to effectively compare different solutions, evaluating efficiency in order to choose the best solution for a given problem. Periodic code reviews will be held in order to expose students to a range of different solution methods, which will aid them in discovering weaknesses in their own work and will improve their ability to communicate with others on technical topics.  The course will include an introduction to the python scientific computing libraries and other statistical packages.  Additional course topics will include the use of version control systems, software profiling, general software engineering practices and basic shell scripting.

The field of Human Computer Interaction (HCI) encompasses the design, implementation, and evaluation of interactive computing systems. This course will provide a survey of HCI theory and practice. The course will address the presentation of information and the design of interaction from a human-centered perspective, looking at relevant perceptive, cognitive, and social factors influencing in the design process. It will motivate practical design guidelines for information presentation through Gestalt theory and studies of consistency, memory, and interpretation. Technological concerns will be examined that include interaction styles, devices, constraints, affordances, and metaphors. Theories, principles and design guidelines will be surveyed for both classical and emerging interaction paradigms, with case studies from practical application scenarios. As a central theme, the course will promote the processes of usability engineering, introducing the concepts of participatory design, requirements analysis, rapid prototyping, iterative development, and user evaluation. Both quantitative and qualitative evaluation strategies will be discussed.

Virtual reality (VR) is an emerging technology that has recently been widely used in various areas, such as education, training, well-being, and entertainment. VR offers a highly immersive experience as the head mounted displays surround a 360-degree view of the user. It encompasses many disciplines, such as computer science, human computer interaction, game design and development, information science, and psychology. This course merges a theoretical and practical approach to give students the necessary knowledge that is required to design, develop, and critique virtual reality games and applications.

Algorithms are a crucial component of game development. This course will provide students with an in-depth introduction to algorithm concepts for game development. The course will cover basic algorithm and data structures concepts, basic math concepts related to game algorithms, physics and artificial intelligence based game algorithms that are supplemented with modern examples. Unity Game Engine along with C# programming language will be used throughout the class.

Data Warehousing and Analytics In the Cloud will utilize concepts, frameworks, and best practices for
designing a cloud-based data warehousing solution and explore how to use analytical tools to perform
analysis on your data. In the first half of the course, I will provide an overview of the field of Cloud
Computing, its main concepts, and students will get hands-on experience through projects which utilize
cloud computing platforms. In the second half of the course, we will examine the construction of a cloudbased
data warehouse system and explore how the Cloud opens up data analytics to huge volumes of
data.
 

This course provides an introduction to video game development. We will explore game design (not just computer games, but all games) and continue with an examination of game prototyping. Once we have working prototypes, we will continue with the development of a complete 2D computer game. The remaining course topics include: designing the game engine, rendering the graphics to the screen, and artificial intelligence. Students will be given periodic homework that reinforces what was learned in class. Homework will include developing a game prototype, game design documentation, some programming tasks. Students will work in small teams to develop a working game as a term project. Grades will be primarily based on the term project with some small amount of weight to homework. The examples provided in class will be programmed in Java and available for execution on any operating system. Programming homework assignments will be done in either Java or the language chosen by the instructor. The term project can be written in any programming language with instructor permission.

Special topics courses are offered to allow students to explore specialized topics not covered in the program curriculum. Multiple topics might be offered in any given year, and specialized topic descriptions will be advertised by the School for students interested in enrolling in the course.  A specific course syllabus will be published prior to the offer of a special topic course.

Fundamentals of processing of natural language and computational linguistics.

This course covers theory, methods, and techniques widely used to design and develop a relational database system and students will develop a broad understanding of modern database management systems. Applications of fundamental database principles in a stand-alone database environment using MS Access and Windows are emphasized. Applications in an Internet environment will be discussed using MySQL in the Linux platform.

Society

  • 3 units total

Choose one class from:

The focus of this course is on how social information is produced though language and identity work online, focusing on patterns of talk and interactional rules and practices across contexts (e.g., text-messaging, online communities, personal identity work, and transnational blogs). As part of this focused study of talk, this course will explore how online language use can create, maintain, reproduce, or disrupt roles and related norms (e.g., those of a friend, student, expert, or political agent), as well as identities and social categories (e.g., gender, sexuality, race, disability, or nationality). This course will also focus on the broader discourses on a 'global' level, examining human collaboration online for practices tied to elitism, the movement of social capital, racism, power, and the cultural production of inequalities.

This course will lay a foundation for theoretical analyses of how people socially create and negotiate information in the digital age. In addition, this course investigates a variety of approaches ranging from critical/cultural studies to positivist/behavioral research, considering the differing ways to think about social life and information in contemporary times. Broader paradigmatic assumptions (e.g., feminist theory, systems research) as well as specific theoretical topics (e.g., interactivity, mobility, telecommunity) will be examined. In addition, this class will survey the theoretical underpinnings of new media research across a variety of topic areas to include gaming, digital labor, communities, and global culture online.

In the early 21st Century, we see publishing in the throes of dramatic changes, from print to electronic most obviously but also in who authors books, the economics of publishing, and how books get to readers. These changes remind us that the dynamics of the movement of the written word to its audience are an integral part of the society in which books are written, produced, and circulate. This 3-credit course takes an historical perspective on publishing, which we will define as the processes by which books come into being in multiple copies and are distributed to reach their audiences. We will start with ancient societies all over the world, and we will investigate the circumstances across societies in which books distinguish themselves from administrative records and begin to serve the needs of the literate elite. We will examine the way the physical form of the book and the technologies for producing it arise from the circumstances of each society, and in turn, how that physical format conditions the character of books and their use. We will trace the rise of publishing practices and identify the factors necessary for the reproduction and distribution of books to form an actual trade in books in varying societies. As we work our way from the ancient world to the early modern world, we will compare publishing practices in different societies and explore commonalities and differences in the relationships that develop between the creation, reproduction and distribution of books. Of particular focus will be our comparison of the rise of publishing and book trades in Europe, Asia, and the Arab world before 1450. After the introduction of printing with metal moveable type in Europe, associated with Gutenberg in approximately 1450, we will have an opportunity to observe the changes that this new technology makes in publishing and the book trade, by comparing the mature manuscript book trade of the late middle ages to that of the hand-press book publishing of early modern Europe. In the run up to the mid-term we will see the effect of monetary capital on the book trades and the shaping of the function of the publisher (although not yet called that). We will also examine related publishing matters such as art and decorative print production as well as the emergence and social role of pamphlets.

This course will look at how commerce in information content (websites, books, databases, music, movies, software, etc.) functions. We will discuss things like switching costs, net neutrality, the long tail, differential pricing, and complementary goods. We will address the following sorts of questions: - Why do so many information producers give away content (such as "apps" for mobile phones) for free? How do companies (such as Google and Facebook) stay in business when no one has to pay to use their services? - What are contemporary practices with regard to purchasing access to information content? For instance, why do we tend to buy books, but only rent movies? Also, how do new modes of content provision (such as Pandora and Spotify) change the way that creators get paid for their work? - Why are there restrictions on how information content can be used? For instance, why can you play the DVD that you bought on your trip to Europe on the DVD player that you bought at home in the United States? But why should anybody other than an economist care about the answers to these sorts of questions? The world now runs on the production, dissemination, and consumption of information. All of us constantly access all sorts of information, through all sorts of devices, from all sorts of providers. We read and interact with websites, we query databases, and we communicate with each other via social media. These sorts of activities permeate both our personal and professional lives. In order to successfully navigate this digital world, information consumers, information producers, and information policy makers need to understand what sorts of information goods are likely to be available and how much they are likely to cost. We cannot learn enough about digital commerce simply by studying the various information technologies that are now available to create and disseminate information content. What matters most is how people choose to spend their time using these technologies, and what sorts of content can provide earning potential for its creators. What also matters are the unique properties of information content that make it very different from other sorts of goods. For instance, while only one person at a time can drive a particular car or eat a particular hamburger, millions of people can simultaneously read the same book, listen to the same song, and use the same software. These are issues that are part and parcel to living, working, purchasing, and being entertained in an eSociety; these are the issues addressed in this course.

This course provides a powerful introduction to some of the criminal activities taking place in relation to digital information, big data, and social media. Related to the exploration of criminal activity in an eSociety, this course focuses on some of the most common legal issues faced today, with regard to our own personal data (e.g., our health histories, our genetic make up, our cloud-based photos and messages, our past) and in relation to organizational or political data on social media and in society. In this course, students as future technologists, will be exposed to the 'dark side' of this current 'information society' (e.g., deception, cybercrime) as well topics such as big data privacy, digital disruptions, consumer data and related sales, gaming protections, youth safety online, big science data sharing issues and related trust, digital security, as well as how certain groups -- law firms, advocacy groups, marketing professionals, and political or lobbying groups -- are mining data for particular use. Students will be required to consider recent court cases and contentions around the use, management, and protection of data in society as well as the risk humans face in this digital information and mediated age.

This course introduces key concepts and skills needed for those working with information and communication technologies (ICT). Students will be exposed to hardware and software technologies, and they will explore a wide variety of topics including processing and memory systems, diagnostics and repair strategies, operating systems in both desktop and mobile devices. As part of this course, students will consider current technological disruptions, those issues emerging as technologies and social needs collide. Students we also learn about design issues and user needs tied to mobile or computer applications and web-based tools, sites, games, data platforms, or learning environments.

This course is a broad survey of the processes, theories, and practices around instructional technologies that can be applied to various learning situations.  Students will study and apply research and theory on technology adoption, analysis, and support, along with instructional design, learning theories, and training needs analysis.  The course will also guide students through the design of effective tech-supported training, technology selection dependent upon learning situations, evaluation of chosen learning technologies, and considerations in instructional technology piloting, adoption, and support.  By the end of this course, students will make educated decisions about technology implementation across diverse learning environments.

This course focuses on the ethical issues that arise in the context of new and emerging information technologies-- e.g., threats to privacy of ubiquitous technological surveillance, limitations on access created by digital rights management. The course will use the framework of ethical theory to analyze these issues and to propose policy solutions. The goal of the course is to give students the necessary theoretical foundation to be involved in the evaluation and construction of information policies at the local, national, and international level. The course will focus on three core areas where digital dilemmas arise--information access, information privacy, and intellectual property. In order to achieve depth as well as breadth, the course will put one of these issues at the center and discuss the others in relation to it. So, for instance, the course may focus on Intellectual Property looking at the threats and benefits of IP to privacy and access. This syllabus provides an overview of the range of topics that may be discussed.

Security is about protecting assets, such as money and physical possessions.  For instance, we use walls, locks, burglar alarms, and even armed guards to keep other people from stealing and/or destroying our stuff. These days, information is typically one of our most important assets.  Thus, we have to worry about the possibility of other people stealing and/or destroying it. For instance, criminals threaten our data with scareware or ransomware in order to extort money from us. 

In today's digital society, people have access to a wide variety of information sources and scientific data. In this course, students will learn about the role of science and scientific data in society, and they will consider means for making science information findable and understandable for a wide variety of audiences. This course will provide students an interdisciplinary experience for considering science data and how that information gets shared across contexts.

Special topics courses are offered to allow students to explore specialized topics not covered in the program curriculum. Multiple topics might be offered in any given year, and specialized topic descriptions will be advertised by the School for students interested in enrolling in the course.

Special topics courses are offered to allow students to explore specialized topics not covered in the program curriculum. Multiple topics might be offered in any given year, and specialized topic descriptions will be advertised by the School for students interested in enrolling in the course.

Engagement

Take both:

  • Independent Study, Directed Research, Internship or ESOC 480:Digital Engagement (3 units)
  • ISTA 498 (3 units)

Electives

Elective courses can be taken if needed to reach 120 total units or 42 upper-division units.